Reduced cardiac L-type Ca2+ current in Ca(V)beta2-/- embryos impairs cardiac development and contraction with secondary defects in vascular maturation.

نویسندگان

  • Petra Weissgerber
  • Brigitte Held
  • Wilhelm Bloch
  • Lars Kaestner
  • Kenneth R Chien
  • Bernd K Fleischmann
  • Peter Lipp
  • Veit Flockerzi
  • Marc Freichel
چکیده

Cardiac myocyte contraction depends on transmembrane L-type Ca2+ currents and the ensuing release of Ca2+ from the sarcoplasmic reticulum. Here we show that these L-type Ca2+ currents are essential for cardiac pump function in the mouse at developmental stages where the functional significance of the heart becomes imperative to blood flow and to the continuing growth and survival of the embryo. Disruption of the Ca(V)beta2 gene, which encodes for the predominant ancillary beta subunit of cardiac Ca2+ channels, resulted in diminished L-type Ca2+ currents in cardiomyocytes of embryonic day 9.5 (E9.5). This led to a functionally compromised heart, causing defective remodeling of intra- and extraembryonic blood vessels and embryonic death following E10.5. The defects in vascular remodeling were also observed when the Ca(V)beta2 gene was selectively targeted in cardiomyocytes, demonstrating that they are secondary to cardiac failure rather than a result of the lack of Ca(V)beta2 proteins in the vasculature. Partial rescue of the Ca2+ channel currents by a Ca2+ channel agonist significantly postponed embryonic death in Ca(V)beta2-/- mice. Taken together, these data strongly support the essential role of L-type Ca2+ channel activity in cardiomyocytes for normal heart development and function and that this is a prerequisite for proper maturation of the vasculature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Rhododendron dauricum L. Flavonoids Exert Vasodilation and Myocardial Preservation

Rhododendron dauricum L. is an ancient Chinese traditional herb. The pharmacological effects of R. dauricum extract have been shown in chronic tracheitis. The aim of this study was to investigate the cardiovascular effects of Rhododendron dauricum L. flavonoids (RF) on rats and its mechanisms. This study was performed in isolated vascular rings and a rat model of myocardial infarction and isola...

متن کامل

The Rhododendron dauricum L. Flavonoids Exert Vasodilation and Myocardial Preservation

Rhododendron dauricum L. is an ancient Chinese traditional herb. The pharmacological effects of R. dauricum extract have been shown in chronic tracheitis. The aim of this study was to investigate the cardiovascular effects of Rhododendron dauricum L. flavonoids (RF) on rats and its mechanisms. This study was performed in isolated vascular rings and a rat model of myocardial infarction and isola...

متن کامل

Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.

Excitation-contraction coupling in cardiac myocytes occurs by Ca2+-induced Ca2+ release, where L-type Ca2+ current evokes a larger sarcoplasmic reticulum (SR) Ca2+ release. The Ca2+-induced Ca2+ release amplification factor or gain (SR Ca2+ release/I(Ca)) is usually assessed by the V(m) dependence of current and Ca2+ transients. Gain rises at negative V(m), as does single channel I(Ca) (i(Ca)),...

متن کامل

Overexpression of human beta2-adrenergic receptors increases gain of excitation-contraction coupling in mouse ventricular myocytes.

This study investigated cardiac excitation-contraction coupling at 37 degrees C in transgenic mice with cardiac-specific overexpression of human beta2-adrenergic receptors (TG4 mice). In field-stimulated myocytes, contraction was significantly greater in TG4 compared with wild-type (WT) ventricular myocytes. In contrast, when duration of depolarization was controlled with rectangular voltage cl...

متن کامل

Accessory subunit KChIP2 modulates the cardiac L-type calcium current.

Complex modulation of voltage-gated Ca2+ currents through the interplay among Ca2+ channels and various Ca(2+)-binding proteins is increasingly being recognized. The K+ channel interacting protein 2 (KChIP2), originally identified as an auxiliary subunit for K(V)4.2 and a component of the transient outward K+ channel (I(to)), is a Ca(2+)-binding protein whose regulatory functions do not appear ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 99 7  شماره 

صفحات  -

تاریخ انتشار 2006